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Abstract. Scatter search is an evolutionary method that, unlike genetic algorithms, operates
on a small set of solutions and makes only limited use of randomization as a proxy for

diversification when searching for a globally optimal solution. The scatter search framework is
flexible, allowing the development of alternative implementations with varying degrees of
sophistication. In this paper, we test the merit of several scatter search designs in the context of

global optimization of multimodal functions. We compare these designs among themselves
and choose one to compare against a well-known genetic algorithm that has been specifically
developed for this class of problems. The testing is performed on a set of benchmark multi-
modal functions with known global minima.
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1. Introduction

Scatter search is a solution procedure that falls within the evolutionary
framework and consists of five methods:
1. A Diversification Generation Method to generate a collection of

diverse trial solutions, using one or more arbitrary trial solutions (or
seed solutions) as an input.

2. An Improvement Method to transform a trial solution into one or
more enhanced trial solutions. (Neither the input nor the output
solutions are required to be feasible, though the output solutions are
typically feasible. If the input trial solution is not improved as a
result of the application of this method, the ‘‘enhanced’’ solution is
considered to be the same as the input solution.)

3. A Reference Set Update Method to build and maintain a reference set
consisting of the b ‘‘best’’ solutions found (where the value of b is
typically small, e.g., no more than 20), organized to provide efficient
accessing by other parts of the solution procedure. Several alternative
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criteria may be used to add solutions to the reference set and delete
solutions from the reference set.

4. A Subset Generation Method to operate on the reference set, to pro-
duce a subset of its solutions as a basis for creating combined solu-
tions. The most common subset generation method is to generate all
pairs of reference solutions (i.e., all subsets of size 2).

5. A Solution Combination Method to transform a given subset of solu-
tions produced by the Subset Generation Method into one or more
combined solutions. The combination method is analogous to the
crossover operator in genetic algorithms but it must be capable of
combining two or more solutions.

The scatter search methodology is very flexible, since each of its elements
can be implemented in a variety of ways and degrees of sophistication.
Details about the origin and applications of scatter search can be found in
Refs. [3, 5, 6]. In our current development, we study the merit of alterna-
tive scatter search designs in the context of nonlinear optimization. In par-
ticular, we use a benchmark set of unconstrained problems, for which
global optima are known. That is, the class of problems that we use for
testing can be characterized as:

minimize fðxÞ
subject to lOxOu;

where fðxÞ is a nonlinear function and x is a vector of continuous and
bounded variables. We test several alternatives for generating diversifica-
tion and updating the reference set in a procedure that does not use an
improvement method and in which combinations are linear and limited to
pairs of solutions. We also test the use of a two-phase intensification.
These strategies are added to a basic procedure, which is outlined in form
of pseudo-code in Figure 1.
The basic procedure in Figure 1 starts with the creation of an initial ref-

erence set of solutions (RefSet). The Diversification Generation Method is
used to build a large set of diverse solutions P. The size of P (PSize) is
typically 10 times the size of RefSet. Initially, the reference set RefSet con-
sists of b distinct and maximally diverse solutions from P. The solutions in
RefSet are ordered according to quality, where the best solution is the first
one in the list. The search is then initiated by assigning the value of TRUE
to the Boolean variable NewSolutions. In step 3, NewSubsets is constructed
and NewSolutions is switched to FALSE. Since we are focusing our atten-
tion to subsets of size 2, the cardinality of NewSubsets corresponding to
the initial reference set is given by (b2)b)/2, which accounts for all pairs of
solutions in RefSet. The pairs in NewSubsets are selected one at a time in
lexicographical order and the Solution Combination Method is applied to
generate one or more solutions in step 5. If a newly created solution
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improves upon the worst solution currently in RefSet, the new solution
replaces the worst and RefSet is reordered in step 6. The NewSolutions flag
is switched to TRUE and the subset s that was just combined is deleted
from NewSubsets in steps 7 and 8, respectively.

Note that while this basic procedure is very aggressive in trying to
improve upon the quality of the solutions in the current reference set, it
those so by sacrificing search diversity. In fact, the Diversification Genera-
tion Method is used only once to generate PSize different solutions at the
beginning of the search and it is never employed again. The initial RefSet
is built selecting a solution from P and then making b)1 more selections
in order to maximize the minimum distance between the candidate solu-
tion and the solutions currently in RefSet. That is, for each candidate
solution x in P-RefSet and reference set solution y in RefSet, we calculate
a measure of distance or dissimilarity d(x,y). We then select the candidate
solution that maximizes dminðxÞ, where dminðxÞ ¼ miny2RefSetfdðx; yÞg:
The updating of the reference set is based on improving the quality of the

worst solution and the search terminates when no new solutions are admitted
to RefSet. The procedure does not use an Improvement Method, which in
scatter search implementations is typically applied after a new solution is
constructed with either the Diversification Generation Method or the Com-
bination Method. The Subset Generation Method is also very simple and
consists of generating all pairs of solutions in RefSet that contain at least one
new solution. This means that the procedure does not allow for two solutions
to be subjected to the Combination Method more than once.

if ( x is not in RefSet and

1. Start with P = Ø.  Use the Diversification Generation Method to construct a solution x.  If x ∉P  then
add x to P ( i.e., P = P ∪ x ), otherwise, discard x.  Repeat this step until |P| = PSize.  Build 
RefSet = { x1, …, xb } with b diverse solutions in P.

2. Evaluate the solutions in RefSet and order them according to their objective function value such that x1

is the best solution and xb the worst.  Make NewSolutions = TRUE. 
while ( NewSolutions ) do
 3. Generate NewSubsets, which consists of all pairs of solutions in RefSet that include at least one 

new solution.  Make NewSolutions = FALSE. 
while ( NewSubsets ≠ ∅) do

 4.    Select the next subset s in NewSubsets.
 5.    Apply the Solution Combination Method to s to obtain one or more new solutions x.

 

6.   Make xb= x and reorder RefSet.
7.   Make NewSolutions = TRUE. 

end if
8.   Delete from NewSubsets.

end while
end while

Figure 1. Outline of basic scatter search.
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In the remainder of this paper, we develop and test scatter search designs
that add to the basic procedure of Figure 1. All of these variations employ
a method for creating new solutions that consists of linear combinations of
two solutions in the reference set. Linear combinations of two solutions
were suggested by Glover [2] in the context of nonlinear optimization and
are a generalization of the linear or arithmetical crossover also used in con-
tinuous and convex spaces [8]. We consider the following three types of lin-
ear combinations, where we assume that the reference solutions are x0 and
x00, d ¼ rðx00 � x0Þ=2 and r is a random number in the range (0, 1):

C1 : x ¼ x0 � d:

C2 : x ¼ x0 þ d:

C3 : x ¼ x00 þ d:

In the basic procedure of Figure 1, the Combination Method generates one
solution of each type when combining two solutions in the reference set.
Note that the combination mechanism includes a random element and
therefore it is possible to combine the same pair of solutions more than
once to generate new solutions. The main motivation for using a random
component in the Combination Method is that it would be difficult to cali-
brate the procedure and find effective r-values for a variety of problems.
The Subset Combination Method does not allow the same pair of solutions
to be combined more than once.

2. Reference Set Update Method

In the basic procedure of Figure 1, the reference set is updated by replacing
the reference solution with the worst objective function value with a new
solution that has a better objective function value. Since the RefSet is always
ordered, the best solution can be denoted by x1 and worst solution by xb.
Then, when a new solution x is generated as a result of the application of
the Combination Method, the objective function value of the new solution is
used to determine whether the RefSet needs to be updated. That is, if:

x j2RefSet and fðxÞ < fðxbÞ;
we update RefSet by making xb ¼ x and reordering the reference set. We
have developed the following three variations of this basic update proce-
dure (UP0), which we will refer to as UP1, UP2 and UP3.

2.1. REFSET UPDATE UP1

This update adds a mechanism to partially rebuild the reference set when
no new solutions can be generated with the Combination Method. The
update is performed after the inner ‘‘while-loop’’ in Figure 1 fails and the
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NewSolutions variable is FALSE. (The inner while-loop consists of steps 4
to 8.) The RefSet is partially rebuilt with a diversification update, which
works as follows. Solutions x½b=2�þ1; . . . ;xb are deleted from RefSet, where
[v] is the largest integer less than or equal to v. The frequency values
freq(i,j), the number of times sub-range j has been chosen to generate a
value for variable i, in the Diversification Generation Method (see section
3) are updated with the corresponding values from the solutions that remain
in the reference set, that is, x1; . . . ;x½b=2�. Then, the generator is used to con-
struct a set P of solutions. Solutions x½b=2�þ1; . . . ;xb in RefSet are sequen-
tially selected from P with the max-min criterion used in step 1 of Figure 1
(and described in the previous section). The min-max criterion is applied
against solutions x1; . . . ;x½b=2� when selecting solution x½b=2�þ1, then against
solutions x1; . . . ;x½b=2�þ1 when selecting solution x½b=2�þ2, and so on.
The following modification of the pseudo-code in Figure 1 incorporates

the UP1 update. The modification consists of adding the following instruc-
tions after the end of the inner while-loop:

ifðNewSolutions ¼ FALSEÞ then
9. Use the Diversification Generation Method to replace

solutions x½b=2�þ1; . . . ;xb from

RefSet and reorder RefSet:

10. Make NewSolutions ¼ TRUE

endif

Note that when this update is added to the basic procedure, the resulting
search does not have a built-in termination criterion. In our experimental
testing we stop the search after a maximum number of objective function
evaluations has been reached. The basic Combination Method is applied
when using the UP1 update.

2.2. REFSET UPDATE UP2

This update has the goal of dynamically preserving diversity in the reference
set, instead of allowing it to become homogenous by only admitting high
quality solutions that in many applications tend to be very similar to each
other. Hence, in addition to updating the reference set when new solutions
of high quality are generated, the reference set is also updated with highly
diverse solutions. Specifically, the update consists of partitioning the refer-
ence into two subsets: RefSet1 ¼ fx1; . . . ; x½b=2�g and RefSet2 ¼
fx½b=2�þ1; . . . ; xbg. The first subset is referred to as the ‘‘quality’’ subset and
the second is referred to as the ‘‘diverse’’ subset. The solutions in RefSet1
are ordered according to their objective function value and the set is
updated with the goal of increasing quality, using the UP0 criterion. That
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is, a new solution x replaces the reference solution x½b=2� if fðxÞ < f x½b=2�
� �

:
The solutions in RefSet2 are ordered according to their diversity value and
the update has the goal of increasing diversity. Therefore, a new solution x
replaces the reference solution xb if dminðxÞ>dminðxbÞ:
We can modify the outline in Figure 1 to incorporate the UP2 update by

replacing the ‘‘if’’ statement inside the inner while-loop with the following:

if ðx is not in RefSet1 and fðxÞ < f x½b=2�
� �

Þ then

6a. Make x½b=2� ¼ x and reorder RefSet1:

7a. Make NewSolutions ¼ TRUE:

else ifðx is not in RefSet2 and dminðxÞ > dminðxbÞÞ then
6b. Make x½b� ¼ x and reorder RefSet2:

7b. Make NewSolutions ¼ TRUE:

end if

When adding this update to the basic procedure, the procedure exits the
inner while-loop when no new solutions can be admitted to either RefSet1
or RefSet2 during the combination of all NewSubsets. The search, however,
does not terminate, because RefSet is updated using the UP1 update. That
is, RefSet1 is kept and RefSet2 is rebuilt with the Diversification Genera-
tion Method. The following rules are used during the application of the
Combination Method when the UP2 update is active, assuming that x0 and
x00 are the reference solutions to be combined:

� If both x0 and x00 are elements of RefSet1, then C1 and C3 are
applied once and C2 is applied twice to create 4 solutions.

� If only one of x0 and x00 is a member of RefSet1, then C1, C2 and C3
are applied once to create 3 solutions.

� If neither x0 nor x00 is a member of RefSet1, then C2 and either C1
or C3 is applied once to create 2 solutions, where the selection of C1
or C3 is random.

The rationale behind these rules is that we have experimentally determined
that high-quality solutions tend to create other high-quality solutions and
therefore we allow combinations of two high-quality solutions to create
more new solutions than other types of combinations [1]. Note that we do
not use common random numbers during the application of these combi-
nation methods.

2.3. REFSET UPDATE UP3

This update is an extension of UP2. The reference set is divided into three
subsets: RefSet1 ¼ fx1; . . . ;x½ðb�2Þ=2�g;RefSet2 ¼ fx½ðb�2Þ=2�þ1; . . . ; xb�2g, and
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RefSet3 ¼ fxb�1;xbg. RefSet1 and RefSet2 are updated using the same rules
as in UP2. In order to update RefSet3, we keep track of g(x), the objective
function value of the best solution ever created from a combination of
x 2 RefSet1 and any other reference solution. RefSet3 is ordered according
to g(x) in such a way that g xb�1

� �
< g xb
� �

. When solution x½ðb�2Þ=2� in
RefSet1 is replaced with a newly created solution of higher quality, we
compare g x½ðb�2Þ=2�

� �
and g xb

� �
and update RefSet3 accordingly.

We can modify the pseudo-code in Figure 1 to incorporate the UP3
update by replacing the ‘‘if’’ statement inside the inner while-loop with the
following:

if ðx is not in RefSet1 and fðxÞ < f x½ðb�2Þ=2�
� �

Þ then

6a. Make y ¼ x½ðb�2Þ=2� and x½ðb�2Þ=2� ¼ x: Reorder RefSet1:

if ðy is not in RefSet3 and g yð Þ < g xb
� �
Þ then

6b. Make xb ¼ y and reorder RefSet3:

end if

7a. Make NewSolutions ¼ TRUE:

else if ðx is not inRefSet2 and dmin xð Þ > dmin xb�2
� �

Þ then
6c. Make xb�2 ¼ x and reorder RefSet2:

7b. Make NewSolutions ¼ TRUE:

end if

When adding this update to the basic procedure, the search exists the inner
while-loop when no new solutions can be admitted to either RefSet1 or
RefSet2 during the combination of all NewSubsets. As before, the search
does not terminate, because RefSet is updated in a similar way as UP2.
That is, RefSet1 and RefSet3 are kept and RefSet2 is rebuilt with the Diver-
sification Generation Method. Note that the update of RefSet3 is depen-
dent on the update of RefSet1, in the sense that RefSet3 can only be
updated if a solution in RefSet1 is replaced. The combination rules associ-
ated with the UP3 update are the same as the rules for UP2 when combin-
ing solutions from either RefSet1 or RefSet2. However, when x0 is in
RefSet1 and x00 is in RefSet3, then C1 and C2 are applied once with
d ¼ rðx00 � x0Þ=3. Note that we don’t attempt combinations that consist of
either one solution from RefSet2 and one solution from RefSet3 or both
solutions from RefSet3.

3. Diversification Generation Method

The basic Diversification Generation Method (DV0) uses controlled random-
ization and frequency memory to generate a set of diverse solutions. We
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accomplish this by dividing the range of each variable ui ) li into 4 sub-
ranges of equal size. Then, a solution is constructed in two steps. First a
sub-range is randomly selected. The probability of selecting a sub-range is
inversely proportional to its frequency count. Then a value is randomly gen-
erated within the selected sub-range. The number of times sub-range j has
been chosen to generate a value for variable i is accumulated in freq(i, j).
In addition to DV0, we have developed two variants (DV1 and DV2),

which are based on techniques from the area of statistics known as Design
of Experiments. One of the most popular design of experiments is the fac-
torial design kn, where n is the number of factors (in our case variables)
and k is the number of levels (in our case possible variable values). A full
factorial design considers that all combinations of the factors and levels
will be tested. Therefore, a full factorial design with 5 factors and 3 critical
levels would require 35 ¼ 243 experiments. Obviously, full factorial designs
can quickly become impractical even for a small number of levels, because
the number of experiments increases exponentially with the number of fac-
tors. A more practical alternative is to employ fractional factorial designs.
These designs draw conclusions based on a fraction of experiments, which
are strategically selected from the set of all possible experiments in the cor-
responding full factorial design. One of the most notable proponents of the
use of fractional factorial designs is Genichi Taguchi [9]. Taguchi proposed
a special set of orthogonal arrays to lay out experiments associated with
quality improvement in manufacturing. These orthogonal arrays are the
result of combining orthogonal Latin squares in a unique manner. We use
Taguchi’s arrays as a mechanism for generating diversity. Table 1 shows
the L9(3

4) orthogonal array that can be used to generate 9 solutions for a
four-variable problem.

The values in Table 1 represent the levels at which the factors are set in
each experiment. For the purpose of creating DV1, a diversification genera-
tor based on Taguchi tables, we translate each level setting as follows:

Table 1. L9(3
4) orthogonal array

Experiment Factors

1 2 3 4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 2 3

8 3 2 1 3

9 3 3 2 1

242 M. LAGUNA AND R. MARTI



1 ¼ lower bound (li),
2 ¼ midpoint liþui

2

� �
;

3 ¼ upper bound (ui).

The generator DV1 uses the appropriate Taguchi table to draw solutions
every time the diversification generator is called. The Taguchi table is
selected according to the number of variables in the problem. When DV1
is employed and all solutions in the appropriate table have been tried, the
generator returns solutions using DV0.
A second variant based on Taguchi Tables (DV2) is obtained when level

settings in each experiment are translated to variable values as follows:

1 ¼ near lower bound li þ r ui � lið Þð Þ, where r is randomly drawn from
(0, 0.1),

2 ¼ near midpoint liþui
2 þ r ui � lið Þ

� �
, where r is randomly drawn from

()0.1, 0.1).
3 ¼ near upper bound ui � r ui � lið Þð Þ, where r is randomly drawn from
(0, 0.1).

Although the same Taguchi experiment can result in more than one solu-
tion to the problem, we turn control to DV0 once all experiments have
been used to generate solutions, because DV0 covers the entire feasible
range of each variable, while DV2 focuses on generating solutions with
variable values near the bounds and the midpoint.

4. Intensification Strategy

The Combination Method is the main intensification mechanism within
scatter search. In Section 2, we described the application of the Combina-
tion Method associated with each variant of the updating strategies for the
reference set. In addition to these rules, we have developed and tested a
two-phase intensification procedure.
The basic design of Figure 1 applies the Combination Method to all the

subsets generated from a given reference set. Although the reference set is
dynamically updated, the new solutions are not used for combination until
all the subsets generated with the previous RefSet have been combined. In
other words, the new solutions that become members of RefSet are not com-
bined until all pairs in NewSubsets are subjected to the Combination
Method. The goal of the first phase of our intensification strategy is to apply
the Combination Method to new solutions in a manner that is faster than in
the basic design. That is, if a new solution is admitted to the reference set the
intensification goal is to allow this new solution to be subjected to the Com-
bination Method as quickly as possible. This strategy can be easily imple-
mented by modifying step 3 in Figure 1 as follows:
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if ðIntensify ¼ TRUEÞ then
3a. Let NewSubsets consist of one pair of solutions, the

where at least one is a new solution. Make NewSolutions ¼ TRUE:

if ðNewSubsets ¼ �Þ then Intensify ¼ FALSE:

end if

if ðIntensify ¼ FALSEÞ then
3b. Generate NewSubsets; which consists of all pairs of

solutions in RefSet that include

at least one new solution. Make NewSolutions ¼ FALSE:

end if

Note that by reducing NewSubsets to just one pair of solutions, the proce-
dure returns to the generation of subsets immediately after one application
of the Combination Method. The downside of this intensification phase is
that some solutions in RefSet could be replaced before being combined. To
illustrate this, suppose that the initial RefSet = { x1, x2, x3, x4 } and that
the intensification strategy is active. Suppose also that the combination of
the pair (x1, x2) results in a solution y for which:

fðyÞ < fðx3Þ
Then, the reference set is changed in such a way that the updated RefSet
= { x1, x2, y, x3 }. The search continues with the combination of the pair
(x1, y). Clearly, the quick updating of the reference set eliminates the com-
bination of the pair (x1, x4).
The second phase of our intensification strategy consists of selecting the

two best solutions in RefSet1 to create eight solutions by applying C1 and
C3 twice and C2 four times. Note that for this intensification, we do not
require that at least one of the two best solutions be new. We do not test
the two phases of our intensification strategies separately. That is, we either
apply the entire two-phase strategy or we don’t apply it at all. The applica-
tion of the intensification strategy depends on two parameters: IntPoint
and IntLength. IntPoint is the iteration number at which the first intensifi-
cation phase is applied for IntLength iterations. The second intensification
phase is automatically applied at iteration 2*IntPoint. An iteration, in our
context, is considered a single evaluation of the objective function.

5. Computational Experiments

Our computational testing consists of two main experiments. In the first
experiment, we compare the performance of the scatter search variants that
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result from the application of the alternative strategies described in the previ-
ous sections. In the second experiment, we compare the performance of the
most effective scatter search design against a well-known genetic algorithm.
Table 2 shows summary information of 40 test problems that are based on a
set of nonlinear objective functions, most of which can be found in the fol-
lowing web pages:

http://www.cyberiad.net/realbench.htm
http://solon.cma.univ.ie..ac.at/�neum/glopt/my_problems.html

The numbers between parentheses associated with some of the problems
are the parameter values for the corresponding objective function. A typi-
cal parameter refers to the number of variables, since several of these func-
tions expand to an arbitrary number of variables. Although the objective
functions are built in a way that the optimal solutions are known, the opti-
mization problems cannot be trivially solved by search procedures that do
not exploit the special structure associated with each function. A detailed
description of the objective functions is provided in the Appendix.
Since the initial reference set includes the solution in which all the vari-

ables are set to their lower bound (i.e., x ¼ l), the solution in which all the
variables are set to their upper bounds (i.e., x ¼ u) and the solution for
which all the variables are set to the midpoint (i.e., x ¼ (u+l )/2), we have
modified the bounds in those cases where any of these solutions turns out
to be the optimal. For example, the optimal solution to the ‘‘De Joung’’
function is x ¼ 0 and the original bounds for all variables were l ¼ )5.12
and u ¼ 5.12. Since the midpoint of this range is the optimal solution, the
problem is trivially solved by any of our scatter search variants. Therefore,
we have modified the range and changed the lower bound to )2.56.
For our experiments, we define the optimality gap as:

GAP ¼ fðxÞ � fðx�Þj j;
where x is a heuristic solution and x* is the optimal solution. We then say
that a heuristic solution x is optimal if:

GAPO e fðx�Þ ¼ 0,
ej fðx�Þj; fðx�Þ 6¼ 0.

�

In our experimentation we set e = 0.001. Our first experiment consists of
trying all possible combinations of the designs resulting from the strategies
described above. We consider the following settings:

Reference set update: UP1, UP2 and UP3;

Diversification generation: DV0, DV1 and DV2;

Intensification strategy: IN0 (deactivated) and IN1 (activated).

We use IntPoint ¼ 3000 and IntLength ¼ 200 for IN1. These settings result
in 3 · 3 · 2 ¼ 18 possible combinations and each combination is run up to a
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maximum of 10 000 objective function evaluations. Note that we do not test
settings with UP0 because this update strategy causes an early termination of
the search and cannot compete with extended runs of the other variants. We
execute 18 · 20 ¼ 360 runs of our scatter search procedure, because we limit

Table 2. Test problems

Number of

variables

Problem

number

Name and parameter values x* f(x*)

2 1 Branin (9.42478, 2.475)a 0.397887

2 B2 (0, 0) 0

3 Easom (p,p) )1
4 Goldstein and Price (0, )1) 3

5 Shubert (0.0217, )0.9527)a )186.7309
6 Beale (3, 0.5) 0

7 Booth (1, 3) 0

8 Matyas (0, 0) 0

9 SixHumpCamelback (0.089840, )0.712659)a )1.0316285
10 Schwefel(2) (1, 1) 0

11 Rosenbrock (2) (1, 1) 0

12 Zakharov(2) (0, 0) 0

3 13 De Joung (0, 0, 0) 0

14 Hartmann(3,4) (0.114614,

0.555649, 0.852547)

0

4 15 Colville (1, 1, 1, 1) 0

16 Shekel(5) (4, 4, 4, 4) )10.1532
17 Shekel(7) (4, 4, 4, 4) )10.4029
18 Shekel(10) (4, 4, 4, 4) )10.53641
19 Perm(4,0.5) (1, 2, 3, 4) 0

20 Perm0(4,10) (1, 1/2, 1/3, 1/4) 0

21 Powersum (8,18,44,114) (1, 2, 2, 3) 0

6 22 Hartmann(6,4) (0.20169, 0.150011,

0.47687, 0.275332,

0.311652, 0.6573)

0

23 Schwefel(6) (1, …, 1) 0

24 Trid(6) xi = i*(7)i) )50
10 25 Trid(10) xi = i*(11)i) )210

26 Rastrigin(10) (0,…,0) 0

27 Griewank(10) (0, …, 0) 0

28 Sum Squares(10) (0, …, 0) 0

29 Rosenbrock(10) (1, …, 1) 0

30 Zakharov(10) (0, …, 0) 0

20 31 Rastrigin(20) (0, …, 0) 0

32 Griewank(20) (0, …, 0) 0

33 Sum Squares(20) (0, …, 0) 0

34 Rosenbrock(20) (1, …, 1) 0

35 Zakharov(20) (0, …, 0) 0

>20 36 Powell(24) (3, )1, 0, 1, 3, …, 3, )1, 0, 1) 0

37 Dixon and Price(25) xi ¼ 2�ð
z�1
z Þ; z ¼ 2i�1 0

38 Levy(30) (1, …, 1) 0

39 Sphere(30) (0, …, 0) 0

40 Ackley(30) (0, …, 0) 0

a This is one of several multiple optimal solutions.
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this experiment to the odd-numbered problems in Table 2. We use half of the
available problems to be able to confirm our findings when applying them to
the entire set of problems. The outcome from the first experiment is summa-
rized in Table 3.

The results in Table 3 indicate that there is an important difference
between the number of optimal solutions found with the (UP1, DV0, *)
and (UP1, DV1, *) settings and all other settings tested in our first experi-
ment. Among the top four settings, the (UP1, DV0, IN1) seems to domi-
nate the others in terms of the average GAP.
Since the GAP variability is quite large with respect to the average val-

ues, we conducted an analysis of variance to detect statistically significant
differences. Table 4 shows the analysis of variance output from SPSS. The
model tests for differences in means of the dependent variable GAP and
includes the three factors UP, DV and IN.
In our second main experiment, we compare the performance of our

scatter search with UP1, DV0 and IN1 against Genocop III (http://evon-
et.lri.fr/evoweb/resources/software/record.php?id=88), an implementation
of genetic algorithms that is customized for solving nonlinear optimization
problems with continuous and bounded variables [7]. We chose the (UP1,
DV0, IN1) setting because it is the one with the smallest average GAP in
Table 3 and also is one of four with the largest number of optima found.
Table 5 shows the average GAP value for our scatter search implementa-

tion compared to the one for Genocop III. The average GAP is calculated

Table 3. Results of various scatter search designs

Update

method (UP)

Diversification

method (DV)

Intensification

strategy (IN)

Average GAP Std. Dev. GAP Number of

optima

1 0 0 9.90 30.93 14

1 0 1 6.14 26.44 13

1 1 0 45.76 171.00 13

1 1 1 10.76 32.21 14

1 2 0 35.84 127.98 7

1 2 1 34.07 117.99 9

2 0 0 46.15 177.96 8

2 0 1 45.94 178.01 6

2 1 0 68.89 208.02 6

2 1 1 55.58 131.76 3

2 2 0 59.62 193.65 1

2 2 1 48.00 116.76 2

3 0 0 40.47 150.91 8

3 0 1 47.82 183.01 9

3 1 0 69.82 206.21 3

3 1 1 77.90 206.01 5

3 2 0 45.53 121.89 5

3 2 1 47.02 122.59 2
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over the set of 40 problems in Table 2 at several points during the search.
Since Genocop III begins with a GAP in the order of 1027 for problem 23,
we also provide the average GAP calculated over 39 problems, ignoring
the GAP for problem 23.
Table 5 shows that the average GAP of scatter search is consistently

lower than the average GAP associated with Genocop III. In fact, the aver-
age GAP of scatter search after 100 evaluations of the objective function is
already better than the average GAP for Genocop III after 50 000 objective
function evaluations. The final GAP values for scatter search are all less
than 1.0, except for problems 23, 26, 34, and 40, for which the GAP values
are 118.4341, 9.9496, 2.2441, and 5.5033, respectively. Although there is a
difference in average GAP values in Table 5 between scatter search and
Genocop, an analysis of variance revealed that the difference of means is
not statistically significance. SPSS yields a p-value of 0.164 for the compar-
ison of means at 5000 evaluations with a one-way ANOVA.
Counting the number of optimal solutions found with each method is an

alternative measure of performance, as shown in Table 3. The plot in Fig-
ure 2 shows the number of e-optimal solutions found by each procedure
during a search with a stopping criterion of 50,000 objective function

Table 4. ANOVA for scatter search designs

Source Sum of squares df Mean square F p-value

UP 75196.848 2 37598.424 1.657 0.192

DV 29293.122 2 14646.561 0.645 0.525

IN 2641.153 1 2641.153 0.116 0.733

UP * DV 13664.106 4 3416.026 0.151 0.963

UP * IN 5892.651 2 2946.325 0.130 0.878

DV * IN 3265.096 2 1632.548 0.072 0.931

UP * DV * IN 4959.722 4 1239.930 0.055 0.994

Error 7761017.193 342 22693.033

Total 8598536.376 360

The p values are clearly larger than any reasonable critical value that one might use to test the significance

of the mean GAP. Therefore the ANOVA indicates that the mean GAP does not differ more than would be

expected by chance alone.

Table 5. Average GAP values

Evaluations

100 500 1000 5000 10000 20000 50000

Genocopa 5.37E+25 2.39E+17 1.13E+14 636.37 399.52 320.84 313.34

Genocopb 1335.45 611.30 379.03 335.81 328.66 324.72 321.20

Scatter Search 134.45 26.34 14.66 4.96 3.60 3.52 3.46

a Average values over all test problems.
b Average values ignoring problem 23.
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evaluations. The plot shows the better performance of the scatter search
implementation, which solves four problems within 100 evaluations and 30
by 20 000 evaluations. At the end of the search, Genocop III successfully
solves a total of 23 problems.
We perform a secondary experiment to investigate whether any of the

scatter search variants is capable of solving the 10 problems that the UP1,
DV0 and IN1 setting did not solve. For each unsolved problem (15, 19,
23, 26, 29, 34, 36–38 and 40), we run a 50 000-evaluation search using each
of the 17 settings, excluding (UP1, DV0, IN1). The outcome of this experi-
ment is that 5 additional problems are solved and the average GAP of the
unsolved problems is reduced to 1.2322. These results are summarized in
Tables 6 and 7.
Table 6 shows that both settings (UP1, DV1, IN0) and (UP1, DV1,

IN1) are capable of solving problems 15, 19 and 26. However, the perfor-
mance of (UP1, DV1, IN0) is considered better regarding these three prob-
lems because it solves them in fewer evaluations than (UP1, DV1, IN1).
This setting, on the other hand, is capable of solving the elusive problem
23 employing less than 10 000 evaluations. Also, a setting that uses UP1
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Figure 2. Number of problems solved.

Table 6. Additional solved problems

Setting Problem Evaluations

(UP1, DV1, IN0) 15 13 638

19 13 325

26 27

(UP1, DV1, IN1) 15 16 152

19 37 118

23 9525

26 27

(UP2, DV0, *) 36 119

* = All options.
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and DV0 solves problem 36 regardless of the intensification strategy.
Finally, note that from the unsolved problems in Table 7, only two have a
GAP value larger than 1.
The comparisons are made on the basis of solution quality versus num-

ber of evaluations because computing times are equivalent for all the tested
methods. For instance, the average time to complete a run of 20 000 objec-
tive function evaluations is 0.4 seconds for both SS (UP1, DV0, IN1) and
Genocop on a 2.53 GHz Pentium 4 computer. The use of number of func-
tion evaluations as a way of comparing procedures has the additional
advantage of providing a more accurate performance measure in settings
where the evaluation of the objective function is computationally expen-
sive. For example, in the context of optimizing simulations, the time
required to generate solutions is negligible compared to the time required
to evaluate the objective function.

6. Conclusions

We have explored alternative mechanisms to perform key operations within
the scatter search framework. In particular, we have focused on designing
and testing strategies for updating the reference set, generating diversity and
intensifying the search. We have gathered a set of 40 test problems with num-
ber of variables ranging from 2 to 30 to perform experiments with the goal of
assessing the merit of each combination of the proposed strategies. For our
initial testing, we chose 20 problems out of 40 and concluded that the best
parameter setting was UP1, DV0 and IN1. This conclusion is based on the
average GAP value and the number of optimal solutions found, although an
ANOVA could not confirm a statistical significant difference. We then used
this setting to compare the performance of the resulting procedure against a
well-known genetic algorithm. The computational tests show that our scatter
search is robust, because it finds solutions of reasonable quality from the
beginning of the search. This is an important feature in settings where
theobjective function evaluation is computational expensive (e.g., when

Table 7. Unsolved problems

Problem1 Setting GAP

29 (UP1, DV2, IN1) 0.327761

34 (UP1, DV1, IN1) 2.050292

37 (UP1, *, *) 0.666667

38 (UP1, DV0, IN1) 0.089528

40 (UP1, DV2, IN1) 3.026937

Average 1.232237

* = All options.
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optimizing simulations). The procedure is capable of finding e-optimal solu-
tions to 30 out of 40 problems within 20 000 objective function evaluations.
This compares favorably to the number of e-optimal solutions found with
Genocop III employing more than twice the number of evaluations.

Appendix

This appendix contains the description of the set of test functions in
Table 2. The description consists of the objective function, parameter val-
ues and the bounds for each variable.
1. Branin

minimize fðxÞ ¼ x2 � 5
4p2

� �
x21 þ ð5pÞx1 � 6

� �2þ10ð1� 1
8pÞ cosðxiÞ þ 10

subject to �5Ox1; x2O15:

2. B2
minimize fðxÞ ¼ x21 þ 2x22 � 0:3 cos 3px1ð Þ � 0:4 cos 4px2ð Þ þ 0:7
subject to �50OxiO100 for i ¼ 1; 2:

3. Easom

minimize fðxÞ ¼ � cos x1ð Þ cos x2ð Þ exp � x1 � pð Þ2þ x2 � pð Þ2
� �� �

subject to �100OxiO100 for i ¼ 1; 2:

4. Goldstein and Price

minimize fðxÞ ¼
�
1þ x1 þ x2 þ 1ð Þ2

� 19� 14x1 þ 3x21 � 14x2 þ 6x1x2 þ 3x22
� ��

�
�
30þ 2x1 � 3x2ð Þ2

� 18� 32x1 þ 12x21 þ 48x2 � 36x1x2 þ 27x22
� ��

subject to � 2OxiO2 for i ¼ 1; 2:

5. Shubert

minimize fðxÞ ¼
P5

j¼1
j cos jþ 1ð Þx1 þ jð Þ

 !
P5

j¼1
j cos jþ 1ð Þx2 þ jð Þ

 !

subject to �10OxiO10 for i ¼ 1; 2:

6. Beale

minimize
fðxÞ ¼ ð1:5� x1 þ x1x2Þ2 þ ð2:25� x1 þ x1x

2
2Þ

2

þ ð2:625� x1 þ x1x
3
2Þ

2

subject to �4:5Ox1;x2O4:5:

7. Booth

minimize fðxÞ ¼ ðx1 þ 2x2 � 7Þ2 þ ð2x1 þ x2 � 5Þ2
subject to �10Ox1;x2O10:
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8. Matyas
minimize fðxÞ ¼ 0:26ðx21 þ x22Þ � 0:48x1x2
subject to �5Ox1; x2O10:

½

9. SixHumpCamelBack
minimize fðxÞ ¼ 4x21 � 2:1x41 þ 1

3 x
6
1 þ x1x2 � 4x22 þ 4x42

subject to �5Ox1; x2O5:

10, 23. Schwefel(n)

minimize fðxÞ ¼ 418:9829nþ
Pn

i¼1
�xi sin

ffiffiffiffiffiffiffi
xij j

p� �

subject to �500OxiO500 for i ¼ 1; . . . ; n:

11, 29, 34. Rosenbrock(n)

minimize fðxÞ ¼
Pn=2

i¼1
100ðx2i � x22i�1Þ

2 þ ð1� x2i�1Þ2

subject to �10OxiO10 for i ¼ 1; . . . ; n:

12, 30, 35. Zakharov(n)

minimize fðxÞ ¼
Pn

j¼1
x2j þ

Pn

j¼1
0:5jxj

 !2

þ
Pn

j¼1
0:5jxj

 !4

subject to �5OxiO10 for i ¼ 1; . . . ; n:

13. De Joung
minimize fðxÞ ¼ x21 þ x22 þ x23
subject to �2:56OxiO5:12 for i ¼ 1; 2; 3:

14. Hartmann(3,4)

minimize fðxÞ ¼ �
P4

i¼1
ci exp �

P3

j¼1
aij xj � pij
� �2

 !

subject to 0OxiO1 for i ¼ 1; 2; 3:

15. Colville

minimize
fðxÞ ¼ 100ðx2 � x21Þ

2 þð1� x1Þ2 þ 90ðx4 � x23Þ
2 þð1� x3Þ2

þ 10:1 ðx2 � 1Þ2 þðx4 � 1Þ2
� �

þ19:8ðx2 � 1Þðx4 � 1Þ
subject to �10OxiO10 for i ¼ 1; . . . ; 4:

i aij ci pij

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673

2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470

3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547

4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828
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16-18. Shekel(n)

minimize fðxÞ ¼ �
Pn

i¼1
x� aið ÞT x� aið Þ þ ci

� ��1
;

¼ x x1;x2; x3; x4ð ÞT; ai ¼ a1i ; a
2
i ; a

3
i ; a

4
i

� �T

subject to 0OxiO10 for i ¼ 1; 2; 3; 4:

19. Perm(n, b)

minimize fðxÞ ¼
Pn

k¼1

Pn

i¼1
ik þ b
� �

xi
i

� �k�1
� �� �2

subject to �nOxiOn for i ¼ 1; . . . ; n:

20. Perm0(n, b)

minimize fðxÞ ¼
Pn

k¼1

Pn

i¼1
iþ bð Þ xki � 1

i

� �k� �� �2

subject to �nOxiOn for i ¼ 1; . . . ; n:

21. PowerSum(b1,...,bn)

minimize fðxÞ ¼
Pn

k¼1

Pn

i¼1
xki

� �
� bk

� �2

subject to 0OxiOn for i ¼ 1; . . . ; n:

22. Hartmann(6,4)

minimize fðxÞ ¼ �
P4

i¼1
ci exp �

P6

j¼1
aij xj � pij
� �2

 !

subject to 0OxiO1 for i ¼ 1; . . . ; 6:

i aT
i ci

1 4.0 4.0 4.0 4.0 0.1

2 1.0 1.0 1.0 1.0 0.2

3 8.0 8.0 8.0 8.0 0.2

4 6.0 6.0 6.0 6.0 0.4

5 3.0 7.0 3.0 7.0 0.4

6 2.0 9.0 2.0 9.0 0.6

7 5.0 5.0 3.0 3.0 0.3

8 8.0 1.0 8.0 1.0 0.7

9 6.0 2.0 6.0 2.0 0.5

10 7.0 3.6 7.0 3.6 0.5

i aij ci pij

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.05 10.0 17.0 0.10 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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24-25. Trid(n)

minimize fðxÞ ¼
Pn

i¼1
xi � 1ð Þ2

� �
�
Pn

i¼2
xixj

subject to �n2OxiOn2 for i ¼ 1; . . . ; n:

26, 31. Rastrigin(n)

minimize fðxÞ ¼ 10nþ
Pn

i¼1
x2i � 10 cos 2pxið Þ
� �

subject to �2:56OxiO5:12 for i ¼ 1; . . . ; n:

27, 32. Griewank(n)

minimize fðxÞ ¼
Pn

i¼1

x2i
4000�

Qn

i¼1
cos xiffi

i
p
� �

þ 1

subject to �300OxiO600 for i ¼ 1; . . . ; n:

28, 33. Sum Squares (n)

minimize fðxÞ ¼
Pn

i¼1
ix2i

subject to �5OxiO10 for i ¼ 1; . . . ; n:

36. Powell(n)

minimize fðxÞ ¼
Pn=4

j¼1
ðx4j�3 þ 10x4j�2Þ

2 þ 5ðx4j�1 � x4jÞ2

þðx4j�2 � 2x4j�1Þ4 þ 10ðx4j�3 � x4jÞ4
subject to �4OxiO5 for i ¼ 1; . . . ; n:

37. Dixon and Price(n)

minimize fðxÞ ¼
Pn

i¼1
ið2x2i � xi�1Þ2 þ ðx1 � 1Þ2

subject to �10OxiO10 for i ¼ 1; . . . ; n:

38. Levy(n)

minimize fðxÞ ¼ sin2ðpy1Þ þ
Pk�1

i¼1
yi � 1ð Þ2ð1þ 10 sin2ðpyi þ 1ÞÞ

þðyk � 1Þ2ð1þ sin2ð2pxkÞÞ
subject to yi ¼ 1þ xi�1

4 for i ¼ 1; . . . ; n;
�10OxiO10 for i ¼ 1; . . . ; n:

39. Sphere(n)

minimize fðxÞ ¼
Pn

i¼1
x2i

subject to �2:56OxiO5:12 for i ¼ 1; . . . ; n:

40. Ackley(n)

minimize fðxÞ ¼ 20þ e� 20e
�0:2

ffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

i¼1
x2i

r

� e
1
n

Pn

i¼1
cosð2pxiÞ

subject to �15OxiO30 for i ¼ 1; . . . ; n:
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